487/Math.

UG/4th Sem/MTMH-CC-T-10/20

U.G. 4th Semester Examination - 2020

MATHEMATICS

[HONOURS]

Course Code: MTMH-CC-T-10

Full Marks: 60

Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Symbols and notations have their usual meanings.

1. Answer any **ten** questions:

 $2 \times 10 = 20$

- a) What is a zero ring?
- b) Give an example of a non-commutative ring with unity.
- c) Find whether the set of all irrational numbers is a ring with respect to usual addition and multiplication.
- d) Prove that in a commutative ring (R,+, .), $(a + b)^2 = a^2 + 2ab + b^2$ where $x^2 = x.x$, 2x = x + x and $a, b, x \in R$.
- e) Let R be a ring with unity 1 and S be a subring of R with unity e. Is it necessary that 1 = e? Justify your answer.

- f) Give an example to show that the union of two subrings of a ring may not be a subring.
- g) Define characteristic of a ring R. What is the characteristic of the ring $R = (\mathbb{Z}_{6}, +, .)$?
- h) What is an ideal of a ring?
- i) Find all of the ideals of the ring \mathbb{Z}_{18} .
- j) Which elements are divisors of zero in \mathbb{Z}_5 and \mathbb{Z}_8 ?
- k) Define an integral domain. Give an example of a ring which is not an integral domain.
- 1) Evaluate $(x + \overline{1})^2$ in $\mathbb{Z}_3[x]$.
- m) Define a field.
- n) Give an example of a ring which is not a field.
- o) Show that in a field F, $(-x)^{-1} = -x^{-1}$ where x^{-1} is the multiplicative inverse of $x \ne 0$ in F.
- 2. Answer any **four** questions: $5\times4=20$
 - a) Prove that the set of all even integers forms a commutative ring.
 - b) Show that the ring of matrices

$$\left\{ \begin{pmatrix} 2a & 0 \\ 0 & 2b \end{pmatrix} : a, b \in \mathbb{Z} \right\}$$

contains divisors of zero and does not contain the unity. 5

c) Prove that intersection of two ideals of a ring is an ideal of that ring. Give an example to show that union of two ideals may not be an ideal.

3+2

- d) Prove that the characteristic of an integral domain is either zero or a prime number. 5
- e) Prove that every field is an integral domain. Is the converse of the result true? Justify your answer. 3+2
- f) Prove that the ideal $p\mathbb{Z}$ in the ring \mathbb{Z} is maximal if and only if p is a prime. 5
- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) Define a ring with unity element. Show that the set of all rational numbers \mathbb{Q} is a ring under the two compositions \oplus and \odot defined by $a \oplus b = a + b + 7$ and $a \odot b = a + b + \frac{ab}{7}$. If A be a ring such that $a^2 = a$ for each $a \in A$, prove that A is commutative.
 - b) Prove that a finite integral domain is a field.

 Discuss whether the ring of quaternions

$$H = \left\{ \begin{pmatrix} a+ib & c+id \\ -c+id & a-ib \end{pmatrix} : a,b,c,d \text{ are reals} \right\}$$
is a field.
$$5+5$$

- What do you mean a Maximal ideal of a ring R? Let R be the ring of all real valued continuous functions defined on [0, 1] and let $S = \left\{ f \in \mathbb{R} : f\left(\frac{1}{2}\right) = 0 \right\}.$ Show that S is an ideal of R. Is S a maximal ideal of the ring R? Justify your answer. 2+5+3
- d) Show that in a commutative ring R with unity an ideal M is a maximal ideal if and only if the quotient ring R/M is a field. Show that every maximal ideal in a commutative ring with unity is a prime ideal but converse may not be true.

6+4
